Editing
Particle physics
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Antiparticles and color charge === {{Main|Antiparticle|Color charge}} Most aforementioned particles have corresponding [[antiparticle]]s, which compose [[antimatter]]. Normal particles have positive [[Lepton number|lepton]] or [[baryon number]], and antiparticles have these numbers negative.<ref>{{cite journal |last=Tsan |first=Ung Chan |date=2013 |title=Mass, Matter, Materialization, Mattergenesis and Conservation of Charge |journal=International Journal of Modern Physics E |volume=22 |issue=5 |page=1350027 |bibcode=2013IJMPE..2250027T |doi=10.1142/S0218301313500274 |quote=Matter conservation means conservation of baryonic number ''A'' and leptonic number ''L'', ''A'' and ''L'' being algebraic numbers. Positive ''A'' and ''L'' are associated to matter particles, negative ''A'' and ''L'' are associated to antimatter particles. All known interactions do conserve matter.}}</ref> Most properties of corresponding antiparticles and particles are the same, with a few gets reversed; the electron's antiparticle, positron, has an opposite charge. To differentiate between antiparticles and particles, a plus or negative sign is added in [[superscript]]. For example, the electron and the positron are denoted {{Subatomic particle|Electron}} and {{Subatomic particle|positron}}.<ref name="raith">{{cite book |last1=Raith |first1=W. |title=Constituents of Matter: Atoms, Molecules, Nuclei and Particles |last2=Mulvey |first2=T. |publisher=[[CRC Press]] |year=2001 |isbn=978-0-8493-1202-1 |pages=777–781}}</ref> When a particle and an antiparticle interact with each other, they are [[Annihilation|annihilated]] and convert to other particles.<ref>{{cite web |title=Antimatter |url=http://www.lbl.gov/abc/Antimatter.html |url-status=live |archive-url=https://web.archive.org/web/20080823180515/http://www.lbl.gov/abc/Antimatter.html |archive-date=23 August 2008 |access-date=3 September 2008 |publisher=[[Lawrence Berkeley National Laboratory]]}}</ref> Some particles have no antiparticles, such as the photon or gluon.{{Citation needed|date=July 2022}} Quarks and gluons additionally have color charges, which influences the strong interaction. Quark's color charges are called red, green and blue (though the particle itself have no physical color), and in antiquarks are called antired, antigreen and antiblue.<ref name="R. Nave"/> The gluon can have [[Gluon|eight color charges]], which are the result of quarks' interactions to form composite particles (gauge symmetry [[SU(3)]]).<ref name="PeskinSchroeder">Part III of {{cite book |author1=M. E. Peskin |url=https://archive.org/details/introductiontoqu0000pesk |title=An Introduction to Quantum Field Theory |author2=D. V. Schroeder |publisher=[[Addison–Wesley]] |year=1995 |isbn=978-0-201-50397-5 |url-access=registration}}</ref>
Summary:
Please note that all contributions to Physipedia are considered to be released under the Creative Commons Attribution-NonCommercial-ShareAlike (see
Physipedia:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Create account
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Page information