Editing
Particle physics
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Composite === {{Main|Composite particle}} [[File:Quark_structure_proton.svg|thumb|A [[proton]] consists of two up quarks and one down quark, linked together by [[gluon]]s. The quarks' color charge are also visible.]] The [[neutron]]s and [[proton]]s in the [[Atomic nucleus|atomic nuclei]] are [[baryon]]s β the neutron is composed of two down quarks and one up quark, and the proton is composed of two up quarks and one down quark.<ref name="Knowing2">{{cite book |author=M. Munowitz |title=Knowing |publisher=[[Oxford University Press]] |year=2005 |isbn=0195167376 |page=35}}</ref> A baryon is composed of three quarks, and a [[meson]] is composed of two quarks (one normal, one anti). Baryons and mesons are collectively called [[hadron]]s. Quarks inside hadrons are governed by the strong interaction, thus are subjected to [[quantum chromodynamics]] (color charges). The [[Bound state|bounded]] quarks must have their color charge to be neutral, or "white" for analogy with [[Additive color|mixing the primary colors]].<ref>{{cite book |author=B. A. Schumm |url=https://archive.org/details/deepdownthingsbr00schu/page/131 |title=Deep Down Things |publisher=[[Johns Hopkins University Press]] |year=2004 |isbn=978-0-8018-7971-5 |pages=[https://archive.org/details/deepdownthingsbr00schu/page/131 131β132]}}</ref> More [[exotic hadron]]s can have other types, arrangement or number of quarks ([[tetraquark]], [[pentaquark]]).<ref>{{cite journal |last=Close |first=F. E. |year=1988 |title=Gluonic Hadrons |journal=Reports on Progress in Physics |volume=51 |pages=833β882 |bibcode=1988RPPh...51..833C |doi=10.1088/0034-4885/51/6/002 |number=6|s2cid=250819208 }}</ref> A normal atom is made from protons, neutrons and electrons.{{Citation needed|date=July 2022}} By modifying the particles inside a normal atom, [[exotic atom]]s can be formed.<ref>Β§1.8, ''Constituents of Matter: Atoms, Molecules, Nuclei and Particles'', Ludwig Bergmann, Clemens Schaefer, and Wilhelm Raith, Berlin: Walter de Gruyter, 1997, {{ISBN|3-11-013990-1}}.</ref> A simple example would be the [[hydrogen-4.1]], which has one of its electrons replaced with a muon.<ref>{{Cite journal |last1=Fleming |first1=D. G. |last2=Arseneau |first2=D. J. |last3=Sukhorukov |first3=O. |last4=Brewer |first4=J. H. |last5=Mielke |first5=S. L. |last6=Schatz |first6=G. C. |last7=Garrett |first7=B. C. |last8=Peterson |first8=K. A. |last9=Truhlar |first9=D. G. |date=28 Jan 2011 |title=Kinetic Isotope Effects for the Reactions of Muonic Helium and Muonium with H<sub>2</sub> |url=https://www.science.org/doi/abs/10.1126/science.1199421 |journal=Science |volume=331 |issue=6016 |pages=448β450 |doi=10.1126/science.1199421 |pmid=21273484 |bibcode=2011Sci...331..448F |s2cid=206530683}}</ref>
Summary:
Please note that all contributions to Physipedia are considered to be released under the Creative Commons Attribution-NonCommercial-ShareAlike (see
Physipedia:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Create account
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Page information